Answer:
Option B
Explanation:
Given, vectors $x\hat{i}-3\hat{j}+7\hat{k} $ and $ \hat{i}+y\hat{j}-z\hat{k}$ are collinear
$\therefore$ $\frac{x}{1}=\frac{-3}{y}=\frac{7}{-z}=k$
$\Rightarrow$ x=k, -3=ky and 7=-kz
Now, $\frac{xy^{2}}{z}=\frac{k(-\frac{3}{k})^{2}}{(\frac{-7}{k})}=\frac{\frac{9}{k}}{\frac{-7}{k}}=\frac{-9}{7}$