1)

The particular solution of the differential equation  log(dydx)=x   , when x=0 , y=1 is .....


A) y=ex+2

B) y=ex

C) y=ex+2

D) y=ex

Answer:

Option D

Explanation:

 We have, differential equations,

  log(dydx)=xdydx=ex

    dy=exdx

 integrating  on both sides we get

              dy=exdx

    y=ex+C  ........(i)

 On putting x=0, y=1  is Eq .(i) , we get

 1= e0+ C C=0

 Now, the particular solution of the given differential is y= ex