Answer:
Option D
Explanation:
Given lines are ,
x−12=y+13=z−14=λ1 (let) ..........(i)
and x−31=y−λ2=z1=λ2 (let) ......(ii)
Then, any point on the lie (i) is
(2λ1+1,3λ1−1,4λ1+1) and any point on line (ii) is
(λ2+3,2λ2+λ,λ2)
Clearly, then lines (i) and (ii) will intersect , if
(2λ1+1,3λ1−1,4λ1+1) = (λ2+3,2λ2+λ,λ2)
For some particular value of λ1 and λ2
⇒ 2λ1+1=λ2+3,3λ1−1=2λ2+λ,and4λ1+1=λ2
⇒ 2λ1−λ2=2,3λ1−2λ2=λ+1 and4λ1−λ2=−1
On solving 2λ1−λ2=2,4λ1−λ2=−1
We get, λ1=−32 and λ2=−5
Now putting the values of λ1 and λ2 in
3λ1−2λ2=λ+1
⇒ 3(−32)−2(−5)=λ+1⇒−92+10=λ+1
⇒ λ+1=112⇒λ=92