Answer:
Option D
Explanation:
Key Idea Use sine rule,
$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
we have,
$\cos A=\frac{\sin B}{\sin C}$
$\Rightarrow\frac{b^{2}+c^{2}-a^{2}}{2bc}=\frac{b}{c}\left(\because \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=k\right)$
$\Rightarrow$ $ b^{2}+c^{2}-a^{2}=2b^{2}$
$\Rightarrow$ $ c^{2}-a^{2}=b^{2}$
$\Rightarrow$ $ c^{2}=a^{2}+b^{2}$
$\Rightarrow$ $\triangle$ ABC right angled at $\angle C$