Answer:
Option B
Explanation:
$\int\frac{\cos x+x\sin x}{x^{2}+x \cos x}dx$
$=\int\frac{\cos x+x\sin x+x-x}{x^{}(x+ \cos x)}dx$
$=\int\frac{(\cos x+x)+x(\sin x-1)}{x^{}(x+ \cos x)}dx$
= $\int\frac{1}{x}dx+\int\frac{\sin x-1}{x+\cos x}dx$
=$\log|x|-\int\frac{1-\sin x}{x+\cos x}dx$
=$\log|x|-\log(x+\cos x)+c$
= $\log |\frac{x}{x^{}+ \cos x}|+c$