1) Derivative of sin−1(t√1+t2) with respect to cos−1(1√1+t2) is A) 1 B) cot t C) tan t D) 0 Answer: Option AExplanation:Let y = sin−1(t√1+t2) put t=tanθ⇒θ=tan−1t = sin−1(tanθ√1+tan2θ)=sin−1(tanθsecθ) =sin−1(sinθ)=θ=tan−1t and z=cos−1(1√1+t2)=cos−1(1√1+tan2θ)=cos−1(cosθ) θ=tan−1t ∴ dydz=dydtdzst =1(1+t2)1(1+t2)=1