1)

if  $\int \frac{1}{1-\cot x}dx=Ax+B\log |\sin x-\cos x|+c$   then A+B


A) 1

B) -1

C) 0

D) -2

Answer:

Option A

Explanation:

Let l= $\int \frac{1}{1-\cot x}dx$

 =  $\int \frac{1}{1-\frac{\cos x}{\sin x}}dx$

    = $\int \frac{\sin x}{\sin x-\cos x}dx$

 $=\frac{1}{2}\int \frac{2\sin x}{\sin x-\cos x}dx$

 $=\frac{1}{2}\int \frac{\sin x+\sin x+\cos x-\cos x}{\sin x-\cos x}dx$

$=\frac{1}{2}\int \frac{(\sin x-\cos x)+(\sin x+\cos x)}{\sin x-\cos x}dx$

$=\frac{1}{2}[\int dx+\int  \frac{\sin x+\cos x}{\sin x-\cos x}dx$

    Let sin x- cos x=t

  $\Rightarrow$  (cos x+ sin x)dx= dt

$\therefore$    $l=\frac{1}{2}\left[\int dx+\int  \frac{1}{t}dx\right]$

 = $l=\frac{1}{2}\left[x+\log|t|\right]+c$

$=\frac{1}{2}\left[x+\log|\sin x-\cos x|\right]+c$

 $\frac{x}{2}+\frac{1}{2}\log|\sin x-\cos x|+c$

 Here  , A=  $\frac{1}{2}$, B= $\frac {1}{2}$

$\therefore$     A+B= $\frac{1}{2}+\frac{1}{2}$=1