Answer:
Option A
Explanation:
Given , $\omega$ is a complex cube root of unity
$\therefore$ $\omega^{3}$ =1
Given matrix A can be written as A =lA
$A=\begin{bmatrix}\omega & 0&0 \\0& \omega^{2} &0 \\ 0 & 0 &1\end{bmatrix}= \begin{bmatrix}1 & 0&0 \\0& 1&0 \\ 0 & 0 &1\end{bmatrix}A$
On apply R1→$\omega ^{2}$ R1, R2→$\omega ^{}$ R2 , we get
$\Rightarrow$ $\begin{bmatrix}\omega^{3} & 0&0 \\0& \omega^{3} &0 \\ 0 & 0 &1\end{bmatrix}= \begin{bmatrix}\omega^{2} & 0&0 \\0& \omega&0 \\ 0 & 0 &1\end{bmatrix}A$
$\Rightarrow$ $\begin{bmatrix}1 & 0&0 \\0& 1 &0 \\ 0 & 0 &1\end{bmatrix}= \begin{bmatrix}\omega^{2} & 0&0 \\0& \omega&0 \\ 0 & 0 &1\end{bmatrix}A$
$A^{-1}= \begin{bmatrix}\omega^{2} & 0&0 \\0& \omega&0 \\ 0 & 0 &1\end{bmatrix}$