Answer:
Option A
Explanation:
Key Idea Use $p\rightarrow q= \sim p \vee q$
and $p\leftrightarrow q=( \sim p \vee q)\wedge (p \vee \sim q)$
Given, $p,q \rightarrow T $ and $r,s \rightarrow F$
$\therefore$ $a:\sim (p \wedge \sim r)\vee (\sim q \vee s)$
$\equiv \sim(T \wedge T)\vee(F\vee F)$
$\equiv \sim(T) \vee(F)$
$\equiv F \vee F= F$
and $b: \ (p \vee s)\leftrightarrow ( q \wedge r) $
$\equiv (\sim (p \vee s)\vee(q\wedge r))\wedge ((p \vee s)\vee\sim (q \wedge r))$
$\because p\leftrightarrow q \equiv(\sim p \vee q)\wedge(p \vee \sim q)$
$\equiv(\sim (T \vee F)\vee (T \wedge F))\wedge(( T \vee F)\vee \sim(T \wedge F))$
$\equiv( F \vee F)\wedge(T \vee T)$
$\equiv F \wedge T\equiv F$