1)

 The vector equation of the plane 

$r= (2\hat{i}+\hat{k})+\lambda(\hat{i})+\mu(\hat{i}+2\hat{j}-3\hat{k})$   in scalar product form is  $r. (3\hat{i}+2\hat{k})=\alpha$ , then

 $\alpha$= ......


A) 2

B) 3

C) 1

D) 0

Answer:

Option A

Explanation:

 Given , equation of plane

$r= (2\hat{i}+\hat{k})+\lambda(\hat{i})+\mu(\hat{i}+2\hat{j}-3\hat{k})$      ..........(i)

 Here, plane (i) passing through a (let) = $2 \hat{i}+\hat{k}$ 

and parallel to vector b (let)  = $\hat{i}$ and $ c= \hat{i}+2\hat{j}-3 \hat {k}$

 We know that equation of plane passing through a point a and parallel to non -parallel vectors b and c is 

 r.(b x c)= a.(b x c)=[ a b c]

 Now,   [a b c]=  $\begin{bmatrix}2 & 0&1 \\1 & 0&0 \\1 &2 &-3 \end{bmatrix}$

 = 2(0)-0+1(2-0)=2

 and  $b \times c=\begin{bmatrix}\hat{i} & \hat{j}&\hat{k} \\1 & 0&0 \\1 &2 &-3 \end{bmatrix}=3\hat{i}+2\hat{k}$

 $\therefore$  $ r. (3 \hat{i}+2\hat{k})$=2

 therefore , $\alpha$ =2