Answer:
Option B
Explanation:
$C(s)+O_{2}(g)\rightarrow CO_{2}(g);\triangle H_{1}=-x$ ...........(i)
$CO(g)+\frac{1}{2}O_{2}(g)\rightarrow CO_{2}(g);\triangle H_{2}=-y$ ...........(ii)
For the formation of CO subtract Eqs.(ii) from (i) i.e,
$C(s)+O_{2}(g)\rightarrow CO_{2}(g)$
$\underline{CO(g)_{(-)}+\frac{1}{2}O_{2}(g)_{(-)}\rightarrow CO_{2}(g)_{(-)}}$
$\underline{C(s)+\frac{1}{2}O_{2}(g)\rightarrow CO(g)}$
$\therefore$ $\triangle_{r}H$ for formation of CO= $\triangle H _{1}-\triangle H _{2}$
=-x+y or y-x