1)

The molar conductivities at infinite dilution for sodium acetate, HCl and NaCl are 91 S cm2 mol-1,425.9 S cm2 mol-1  and 126.4 S cm2 mol-1  respectively. The molar conductivity of acetic acid at infinite dilution is 


A) 390.5 $S cm^{2}mol^{-1}$

B) 530.9 $S cm^{2}mol^{-1}$

C) 300.5 $S cm^{2}mol^{-1}$

D) 930.5 $S cm^{2}mol^{-1}$

Answer:

Option A

Explanation:

Key Idea Kohlraush law of independent  migration of ions can be used to calculate  $\wedge_{m}^{o}$ for weak electrolyte such as acetic acid 

 

Given,    $\wedge_{m(NaAC)}^{o}= 91 $  $S cm^{2}mol^{-1}$

 $\wedge_{m(HCl)}^{o}$= 425.9 S $cm^{2}mol^{-1}$

 $\wedge_{m(NaCl)}^{o}= 126.4 $ S $cm^{2}mol^{-1}$

 Using Kohlrausch law, to find the molar conductivity of acetic acid

$\wedge_{m(HAc)}^{o}= \lambda_{H^{+}}^{o}+\lambda_{AC^{-}}^{o}$

=$ \lambda_{H^{+}}^{o}+\lambda_{Cl^{-}}^{o}+\lambda_{AC^{-}}^{o}+\lambda_{Na^{+}}^{o}-\lambda_{Cl^{-}}^{o}-\lambda_{Na^{+}}^{o}$

 =$ \wedge_{m(HCl)}^{o}+\wedge_{m(NaAC)}^{o}-\wedge_{m(NaCl)}^{o}$

 ( 425.9+91.0-126.4) S cm2 mol-1

 = 390.5 S cm2   mol-1