Answer:
Option A
Explanation:
In cyclotron frequncy, $v=\frac{eB}{2\pi m}$
or $B=\frac{2\pi m.v}{e}$
Also, relation for radius (R)is
$R=\frac{ m.v}{e B}$ or $v=\frac{eBR}{m}$
$\therefore$ $K E =\frac{1}{2}mv^{2}=\frac{1}{2}m\times\frac{ e^{2}B^{2}R^{2}}{m^{2}}=\frac{ e^{2}B^{2}R^{2}}{2m}$
= $\frac{ e^{2}R^{2}}{2m}\times\frac{4\pi^{2}m^{2}v^{2}}{e^{2}}=2\pi^{2}m R^{2}v^{2}$