Answer:
Option D
Explanation:
Given, $f(x)=\frac{x}{x^{2}+1}$
$\Rightarrow$ $ f'(x)=\frac{(x^{2}+1)\times 1-x(2x)}{(x^{2}+1)^{2}}$
$=\frac{(x^{2}+1 -2x^{2})}{(x^{2}+1)^{2}}=\frac{1-x^{2}}{(x^{2}+1)^{2}}$
since, f(x) is increasing function,
$\therefore$ f '(x) >0
$\Rightarrow$ $\frac{1-x^{2}}{(x^{2}+1)^{2}}>0$
$\Rightarrow$ $1- x^{2} >0$
$\Rightarrow$ $x^{2} <1 $
$\Rightarrow$ -1 < x< 1
$\therefore$ x ε (-1,1)
Hence, option (d) is correct.