Answer:
Option A
Explanation:
Given
x= $e^{\theta}(\sin\theta-\cos\theta)$
and $y=e^{\theta}(\sin\theta+\cos\theta)$
$\Rightarrow$ $\frac{dx}{d\theta}=e^{\theta} (\sin \theta-\cos\theta+\cos\theta+\sin\theta)=2e^{\theta}\sin\theta$
and $\frac{dy}{d\theta}=e^{\theta} (\sin \theta+\cos\theta+\cos\theta-\sin\theta)=2e^{\theta}\cos \theta$
$\therefore$ $\frac{dy}{dx}=\frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}=\frac{2e^{\theta}\cos \theta}{2e^{\theta}\sin \theta}=\cot \theta$
$\Rightarrow$ $\left(\frac{dy}{dx}\right)_{\theta=\frac{\pi}{4}}=\cot \frac{\pi}{4}=1$