1) ∫π/40x.sec2xdx= A) π4+log√2 B) π4−log√2 C) 1+log√2 D) 1−12log2 Answer: Option BExplanation: Let l=∫π/40x.sec2xdx ⇒ l=[x∫sec2xdx]π/40−∫π/40(dydx∫sec2xdx)dx [integration by parts] ⇒ l=[xtanx]π/40−∫π/40tanxdx ⇒ l=[π4tanπ4−0]−[logsecx]π/40 ⇒ l=π4−(logsecπ4−logsec0) l=π4−(log√2−log1) ⇒ l= π4−log√2