1)

$\int_{0}^{\pi/4} x.\sec^{2}x dx=$


A) $\frac{\pi}{4}+\log \sqrt{2}$

B) $\frac{\pi}{4}-\log \sqrt{2}$

C) $1+\log \sqrt{2}$

D) $1-\frac{1}{2}\log {2}$

Answer:

Option B

Explanation:

 Let   l=$\int_{0}^{\pi/4} x.\sec^{2}x dx$

 $\Rightarrow$      $l=[x\int \sec^{2}x dx]^{\pi/4}_{0}-\int_{0}^{\pi/4} \left(\frac{dy}{dx}\int \sec^{2}x dx\right) dx$

                                                                                             [integration by parts]

$\Rightarrow$    $l=[x\tan^{}x ]^{\pi/4}_{0}-\int_{0}^{\pi/4} \tan x dx$

$\Rightarrow$      $l=[\frac{\pi}{4}\tan^{}\frac{\pi}{4}-0 ]-[\log \sec x]^{\pi/4}_{0}$

$\Rightarrow$      $l=\frac{\pi}{4}-\left( \log \sec\frac{\pi}{4}-\log \sec 0\right)$

                   $l=\frac{\pi}{4}-\left( \log\sqrt{2}-\log 1\right)$

$\Rightarrow$ l=  $\frac{\pi}{4}-\log \sqrt{2}$