Answer:
Option D
Explanation:
Given P(4,5,x), Q (3,y,4) and R(5,8,0) are collinear
∴ →PQ=λ→QR
⇒ →PQ=→OQ−→OP
= (3ˆi+yˆj+4ˆk)−(4ˆi+5ˆj+xˆk)=−ˆi+(y−5)ˆj+(4−x)ˆk
and
→QR=→OR−→OQ=(5ˆi+8ˆj)−(3ˆi+yˆj+4ˆk)=2ˆi+(8−y)ˆj−4ˆk
∴ −ˆi+(y−5)ˆj+(4−x)ˆk
= λ[2ˆi+(8−y)ˆj−4ˆk]
On equating the component of vector both sides, we get,
−12=λ,y−58−y=λ,4−x−4=λ
On putting the value of λ , we get
(y−5)=(8−y)(−12)
and (4−x)=−4(−12)
⇒ 2y-10=y-8
and 4-x=2
⇒ y=2
and x=2
∴ x+y=2+2=4