1)

$\int \frac{1}{\sin x.\cos^{2}x}dx$ = 


A) $\sec x+log |\sec x+\tan x|+C$

B) $\sec x\tan x+C$

C) $\sec x+log |\sec x-\tan x|+C$

D) $\sec x+log |cosec x-\cot x|+C$

Answer:

Option D

Explanation:

We have,

 l= $\int \frac{1}{\sin x.\cos^{2}x}dx$

$\Rightarrow$   $l=\int \frac{\sin^{2}x+\cos^{2}x}{\sin x.\cos^{2}x}dx$

$\Rightarrow$    $l=\int \frac{\sin^{2}x}{\sin x.\cos^{2}x}dx+\int \frac{\cos^{2}x}{\sin x.\cos^{2}x}dx$

$\Rightarrow$    $l=\int sec x \tan xdx+\int cosec x dx$

$\Rightarrow$  l= $\sec x+log |cosec x-\cot x|+C$