Answer:
Option C
Explanation:
We have
$\int_{0}^{k} \frac{dx}{2+18x^{2}}=\frac{\pi}{24}$
= $\frac{1}{18}\int_{0}^{k} \frac{dx}{(\frac{1}{3})^{2}+x^{2}}=\frac{\pi}{24}$
$\Rightarrow $ $\frac{1}{18}\times\frac{1}{\frac{1}{3}}[tan^{-1}3x]_0^k=\frac{\pi}{24}$
$\Rightarrow $ $[tan^{-1}3k-tan^{-1}0]=\frac{\pi}{4}$
$\Rightarrow$ $ tan^{-1}3k=\frac{\pi}{4}$
$\Rightarrow$ $ 3k=tan\frac{\pi}{4}$
$\Rightarrow $ 3k=1
$\Rightarrow$ k=$\frac{1}{3}$