Answer:
Option D
Explanation:
Net external torque on the system is zero. Therefore, angular momentum of the system will remain same.
$\Rightarrow $ $l_{1}\omega_{1}=(l_{1}+l_{2})\omega_{2}$
$\frac{\omega_{2}}{\omega_{1}}=\frac{l_{1}}{l_{1}+l_{2}}$ .....(i)
The energy lost . $E_{1}-E_{2}$
$=\frac{1}{2}l_{1}\omega_{1}^{2}-\frac{1}{2}(l_{1}+l_{2})\omega_{2}^{2}$
$=\frac{1}{2}\omega_{1}^{2}\left[l_{1}-(l_{1}+l_{2})\frac{\omega_{2}^{2}}{\omega_{1}^{2}}\right]$
$=\frac{1}{2}\omega_{1}^{2}\left[l_{1}-(l_{1}+l_{2})\frac{l_{1}^{2}}{(l_{1}+l_{2})^{2}}\right]$
[ $\because $ Eq.(i)]
$=\frac{1}{2}\omega_{1}^{2}\left[\frac{l_{1}^{2}+l_{1}l_{2}-l_{1}^{2}}{(l_{1}+l_{2})^{}}\right]$
$=\frac{1}{2}\left[\frac{l_{1}l_{2}}{l_{1}+l_{2}^{}}\right]\omega_{1}^{2}$