Answer:
Option B
Explanation:
The maximum tension in the rope =m(g+a)
Stress in the rope , $T=\frac{m(g+a)}{\pi r^{2}}$
$\therefore$ $T=\frac{m(g+a)}{\pi r^{2}}=\frac{m(g+a)}{\pi (\frac{d}{2})^{2}}$
$\Rightarrow$ $ T=\frac{4m(g+a)}{\pi d^{2}}$
$\Rightarrow$ $ d^{2}=\frac{4m(g+a)}{\pi T}$
$\therefore$ d=$\left[\frac{4m(g+a)}{\pi T}\right]^{1/2}$