Answer:
Option D
Explanation:
Give , A(2,3,5), B(-1,3,2) and C ($\lambda$,5,$\mu$) be the vertices of $\triangle$ ABC.
Let D be the median through A to BC
=$\left(\frac{\lambda-1}{2},\frac{5+3}{2},\frac{\mu+2}{2}\right)$
=$\left(\frac{\lambda-1}{2},\frac{8}{2},\frac{\mu+2}{2}\right)$
$z=\left(\frac{\lambda-1}{2},4,\frac{\mu+2}{2}\right)$
Now, direction ratio of
$AD=\left(\frac{\lambda-1}{2}-2,4-3,\frac{\mu+2}{2}-5\right)$
i.e, $\left(\frac{\lambda-1-4}{2},1,\frac{\mu+2-10}{2}\right)$
i.e, $\left(\frac{\lambda-5}{2},1,\frac{\mu-8}{2}\right)$
Since , the line AD is equally inclined to the coordinates axes
$\therefore$ $\frac{\lambda-5}{2}=1=\frac{\mu-8}{2}$
On solving first two, we get
$\frac{\lambda-5}{2}=1$
$\Rightarrow$ $\lambda$ =7
On solving last two, we get
$1=\frac{\mu-8}{2}$
$\Rightarrow$ $\mu$ =10