Answer:
Option A
Explanation:
Given point be (2,3,λ) and equation of the plane be
r.(3ˆi+2ˆj+6ˆk)=13
∴ (xˆi+yˆj+zˆk).(3ˆi+2ˆj+6ˆk)=13
[∵r.(xˆi+yˆj+zˆk)]
⇒ 3x+2y+6z=13
or 3x+2y+6z-13=0
Now, distance of the plane from the point (2,3, λ)
d=|ax1+by1+cz1+d√a2+b2+c2|
5=|3×2+2×3+6×λ−13√32+22+62|
[given , d=5]
±5=6+6+6×λ−13√9+4+36
⇒ ±5=6λ−1√49
∴ 5=|6λ−17|
⇒ ±35=6λ−1
⇒ 35=6λ−1
or −35=6λ−1
⇒ λ=6,λ=−173