Answer:
Option D
Explanation:
Let A= $\begin{bmatrix}\alpha & 14&-1 \\2 & 3&1\\6&2&3\end{bmatrix}$
$\Rightarrow$ |A|= $\begin{bmatrix}\alpha & 14&-1 \\2 & 3&1\\6&2&3\end{bmatrix}$=
$=\alpha(9-2)-14(6-6)-1(4-18)= 7\alpha-0+1 \times14$
|A|= 7$\alpha$+14
It is given that inverse of A does not exists
$\therefore$ |A|=0
$\Rightarrow$ 7$\alpha$+14=0
$\Rightarrow$ $\alpha$ =-2