1)

If c denotes the contradiction  , then dual of the compound statement $\sim p\wedge(q\vee c)$


A) $\sim p\vee(q\wedge t)$

B) $\sim p\wedge(q\vee t)$

C) $ p\vee(\sim q\vee t)$

D) $ \sim p\vee( q\vee c)$

Answer:

Option A

Explanation:

For duality , replace '$\vee$' by '$\wedge$' and  '$\wedge$'  by '$\vee$,

 we get

 Dual of the statement 

$\sim p \wedge (q\vee c)$
$\equiv \sim p \vee (q \wedge t)$