1)

If the volume of spherical ball is increasing at the rate of 4$\pi$ cm3/s, then the rate of change of its surface area when the  volume is 288 $\pi$ cm3 , is 


A) $\frac{4}{3}\pi cm^{2}/s$

B) 4$\pi$ $cm^{2}/s$

C) $\frac{2}{3}\pi cm^{2}/s$

D) 2$\pi$ $cm^{2}/s$

Answer:

Option A

Explanation:

Let V and r be the volume and radius of spherical ball , respectively,

 Volume of spherical ball = $\frac {4}{3} \pi r^{3}$

 $\Rightarrow$       $ 288 \pi$ =$\frac {4}{3} \pi r^{3}$    [ given, V=288 cm3]

$\Rightarrow$       288 =$\frac {4}{3}  r^{3}$

$\Rightarrow$         r3  =72 x 3=8 x 27

$\Rightarrow$      $ r^{3} = 2^{3} \times 3^{3}$

                                  [taking cube roots both sides]

$\Rightarrow$     r=6

On  differentiating Eq.(i)  w.r.t 't' , we get

                           $\frac{dV}{dt}=4\pi r^{2}\frac{dr}{dt}$

$\therefore$    $4 \pi=4\pi r^{2}\frac{dr}{dt}$ 

                                            [ given $\frac{dV}{dt}=4\pi$ cubic cm/s]

$\Rightarrow$           $1=(6)^{2}\frac{dr}{dt}$     [$\because$ r=6]

$\Rightarrow$      $\frac{dr}{dt}=\frac{1}{36}$

Now, surface  area of spherical ball (s) = $4\pi r^{2}$

$\Rightarrow$   s= $ 4\pi r^{2}$

 On differentiating  both sides, w.r.t 't', we get

 $\frac{ds}{dt}=4\times 2\pi r\frac{dr}{dt}$

  $=8\times \pi \times6\times\frac{1}{36}$

                                       $\left[\because r= 6 and \frac{dr}{dt}=\frac{1}{36}\right]$

$\Rightarrow$                      $\frac{ds}{dt}=\frac{4\pi}{3}cm^{2}/s$