Answer:
Option D
Explanation:
Let x be the number of defective pens.
Two pens are taken randomly from the box,
$\therefore$ x can take values 0,1,2
$p(x=0)=\frac{^{4}C_{2}}{^{6}C_{2}}=\frac{4\times3}{6 \times 5}=\frac{2}{5}=\frac{6}{15}$
$p(x=1)=\frac{^{2}C_{1} \times^{4}C_{1}}{^{6}C_{2}}=\frac{2\times4\times2 \times 1}{6 \times 5}=\frac{8}{15}$
$p(x=2)=\frac{^{2}C_{2}}{^{6}C_{2}}=\frac{1\times2\times1 }{6 \times 5}=\frac{1}{15}$
E(x)= $\frac{10}{15}$ and =$\frac {2}{3}$
E(x2 )= $\frac{12}{15}=\frac{4}{5}$
Standard deviation$=\sqrt{E(x^{2})-[E(x)]^{2}}$
Standard deviation = $\sqrt{\left(\frac{4}{5}\right)-\left(\frac{2}{3}\right)^{2}}$
= $\sqrt{\frac{4}{5}-\frac{4}{9}}=\sqrt{\frac{36-20}{45}}$
$=\sqrt{\frac{16}{45}}=\frac{4}{3\sqrt{5}}$