Processing math: 100%


1)

If x5x7dx=Ax212x+35+log|x6+x212x+35|+C,  then A= 


A) -1

B) 12

C) 12

D) 1

Answer:

Option D

Explanation:

Let l=x5x7dx

 =(x5)(x5)(x7)(x7)dx   [rationlising]

=x5x25x7x+35dx

=x5x212x+35dx

=122x10x212x+35dx

=122x12+2x212x+35dx

=x212x+35+1(x212x+361)dx+C

  [ Let x212x+35=t(2x12)dx=dt]

=x212x+35+1(x6)212)dx+C

l=x212x+35+log|x6+x212x+35|+C

   l=Ax212x+35+log|x6+x212x+35+C

=1.x212x+35+log|x6+x212x+35+C

 on comparing both sides , we get A=1