Answer:
Option D
Explanation:
Let l=∫√x−5x−7dx
=∫√(x−5)(x−5)(x−7)(x−7)dx [rationlising]
=∫x−5√x2−5x−7x+35dx
=∫x−5√x2−12x+35dx
=12∫2x−10√x2−12x+35dx
=12∫2x−12+2√x2−12x+35dx
=√x2−12x+35+∫1√(x2−12x+36−1)dx+C
[∵ Let x2−12x+35=t⇒(2x−12)dx=dt]
=√x2−12x+35+∫1√(x−6)2−12)dx+C
l=√x2−12x+35+log|x−6+√x2−12x+35|+C
∴ l=A√x2−12x+35+log|x−6+√x2−12x+35+C
=1.√x2−12x+35+log|x−6+√x2−12x+35+C
on comparing both sides , we get A=1