1) If x=a(t−1t),y=a(t+1t) , where t is the parameter , then dydx= ? A) yx B) −xy C) xy D) −yx Answer: Option CExplanation:Given , x=a(t−1t),y=a(t+1t) Now, y2−x2=a2[(t+1t)2−a2(t−1t)2] = a2[t2+1t2+2−t2−1t2+2] ⇒ y2−x2=4a2 On differentiating both sides w.r.t 'x' , we get 2y dydx-2x=0 ⇒ 2(ydydx−x)=0 ∴ dydx=xy