1)

A galvanometer of resistance 30$\Omega$  is connected to a battery of emf 2 V with 1970 $\Omega$ resistance in series. A full scale deflection of 20 divisions is obtained in the galvanometer. To reduce the deflection to 10 divisions, the resistance in series required is 


A) 4030 $\Omega$

B) 4000 $\Omega$

C) 3970 $\Omega$

D) 2000 $\Omega$

Answer:

Option C

Explanation:

According to question

 Net current through  the galvanometer is given by

$l=\frac{V}{R_{eff}}=\frac{2}{1970+30}=\frac{2}{2000}= 10^{-3} A$

As we know, this current provides full scale deflection (i.e, 20 div) . In order to limit the deflection  to 10 divisions , the resistance needed to connect such that the current  reduces can be obtained as

 $\theta= \frac{nlAB}{k}(i.e, \theta \propto l)$

   [symbols have their usual meanings ]

$\Rightarrow $    $\frac{\theta_{1}}{\theta_{2}}=\frac{l_{1}}{l_{2}}=2$

$\Rightarrow$   $l_{2}=\frac{l_{1}}{2}=\frac{10^{-3}}{2}=5 \times 10^{-4} A$

Again      $l= \frac{V}{R_{eff}+R_{5}}$

 $\Rightarrow$     $R_{5}= \frac{V}{l}-R_{eff}$

     $=\frac{2}{5\times10^{-4}}-2000$   

    = $4 \times 10 ^{3}-2000$=2000 $\Omega$

 So, the resistance  of 1970 $\Omega$  is to be replaced by 1970+2000=3970 $\Omega$