Answer:
Option A
Explanation:
Time period of simple pendulum in water is given by
$T=2\pi\sqrt{\frac{l}{g_{eff}}}$
[ Symbols have their usual meanings and $g_{eff}$ = acceleration due to gravity in water]
As we know, $g_{eff}$$=g\left(\frac{\sigma-\rho}{\sigma}\right)$
[ where, $\sigma$ = density of bob.$\rho$ = density of water]
$=9.8\left(\frac{\frac{9}{8}\times10^{3}-10^{3}}{\frac{9}{8}\times 10^{3}}\right)$
$=9.8\left(\frac{\frac{9}{8}-1}{\frac{9}{8}}\right)=9.8\left(\frac{1}{8} \times \frac{8}{9}\right)$
=$\frac{9.8}{9}$
So, $T_{1}=2\pi \sqrt{\frac{l \times 9}{9.8}}\Rightarrow T_{1}=3T$
[$\because $ Time period of simple pendulum in air,
$T_{}=2\pi \sqrt{\frac{l }{9.8}}$]