Answer:
Option B
Explanation:
According to question ,
$\frac{f_{1}}{f_{2}}$=2 (given)
[ $f_{1}$ = apparent frequency when velocity $v_{1}$ is towards the observer.
$f_{2}$ = apparent frequency when velocity $v_{1}$ is away from the observer]
Now, the apparent frequency of sound when the observer move towards the source is given by
$f_{1}=\left(\frac{V}{V-V_{1}}\right)f_{0}$ ............(i)
[ Symbols have their usual meanings]
Similarly when observer moves away from the source, apparent frequency is given by
$f_{2}=\left(\frac{V}{V+V_{1}}\right)f_{0}$ .........(ii)
From Eqs.(i) and (ii), we get
$\frac{f_{1}}{f_{2}}=\frac{\left(\frac{V}{V-V_{1}}\right)f_{0}}{\left(\frac{V}{V+V_{1}}\right)f_{0}}=\frac{V+V_{1}}{V-V_{1}}$
$\Rightarrow$ $=\frac{V+V_{1}}{V-V_{1}}=2\Rightarrow2V-2V_{1}=V+V_{1}$
$\Rightarrow$ $V=3V_{1}\Rightarrow \frac{V}{V_{1}}=3$