1)

When the observer moves towards the stationary source with velocity, v1 the apparent frequency of emitted note is f1. When the observer moves away from the velocity v1, the apparent frequency is f2 . if v is the velocity of sound in air and 

$\frac{f_{1}}{f_{2}}=2, then \frac{v}{v_{1}}=$  ?


A) 2

B) 3

C) 4

D) 5

Answer:

Option B

Explanation:

 According to question ,

 $\frac{f_{1}}{f_{2}}$=2   (given)

[ $f_{1}$ =  apparent frequency when velocity $v_{1}$ is towards the observer.

  $f_{2}$  = apparent frequency when velocity $v_{1}$ is away from the observer]

Now, the apparent frequency of sound  when the observer move towards the source is given by

   $f_{1}=\left(\frac{V}{V-V_{1}}\right)f_{0}$ ............(i)

 [ Symbols have their usual meanings]

 Similarly when observer moves away from the source, apparent frequency is given by

  $f_{2}=\left(\frac{V}{V+V_{1}}\right)f_{0}$  .........(ii)

 From Eqs.(i) and (ii), we get

$\frac{f_{1}}{f_{2}}=\frac{\left(\frac{V}{V-V_{1}}\right)f_{0}}{\left(\frac{V}{V+V_{1}}\right)f_{0}}=\frac{V+V_{1}}{V-V_{1}}$

 $\Rightarrow$      $=\frac{V+V_{1}}{V-V_{1}}=2\Rightarrow2V-2V_{1}=V+V_{1}$

$\Rightarrow$      $V=3V_{1}\Rightarrow \frac{V}{V_{1}}=3$