Answer:
Option C
Explanation:
According to question, the velocity of wave travelling on string is given by
$v=n\lambda=\frac{\lambda}{2L}\sqrt{\frac{T}{\mu}}$ $\left(\because n=\frac{1}{2L}\sqrt{\frac{T}{\mu}}\right)$
$\therefore$ $v=\sqrt {\frac{T}{m/l}}\Rightarrow v=\sqrt{\frac{Tl}{m}}$
and Young's modulus , $Y= \frac{T\times l}{A \triangle l}$
$\therefore$ $T \times l$=$Y A \triangle L$
$\therefore$ $V\propto \sqrt{A}$ (A= Area)
For string A, radius is 2r and for string B radius is r
So, $\frac{V_{A}}{V_{B}}=\sqrt{\frac{4 r^{2}}{r^{2}}}=\sqrt{4}=2$
[ $\because$ Y for both the strings is same]