1)

A wire having tension 225 N  produces six beats  per second when it is tuned with a fork .When tension changes to 256 n , it is tuned with the same fork, the number of beats remains unchanged. The frequency of the fork will be 


A) 186 Hz

B) 225 Hz

C) 256 Hz

D) 280 Hz

Answer:

Option A

Explanation:

The fundamental frequency of wire vibrating  under tension T is given by

$f_{1}=\frac{1}{2}\sqrt{\frac{T}{\mu}}$

Here, $\mu$= mass of string per unit length

Let the frequency of tunning fork be x which beat 6 beats per second

Let (x-f)=$\pm$ 6

$\therefore$     $f_{1}=\frac{1}{2L}\sqrt{\frac{225}{\mu}}$ and $f_{2}=\frac{1}{2L}\sqrt{\frac{256}{\mu}}$

$\therefore$   $\frac{f_{1}}{f_{2}}=\frac{15}{16}$

$\therefore$    $f_{2}=\frac{16}{15}\times f_{1}$

$\Rightarrow$    $f_{2}=\frac{16}{15} (6+x)$

Taking two cases of f1 and equating both , we have

$(x+6)=\frac{16}{15} (x-6)$

 $\therefore$      15x+90=16x-96

 $\therefore$     x=186 Hz