Answer:
Option A
Explanation:
The fundamental frequency of wire vibrating under tension T is given by
$f_{1}=\frac{1}{2}\sqrt{\frac{T}{\mu}}$
Here, $\mu$= mass of string per unit length
Let the frequency of tunning fork be x which beat 6 beats per second
Let (x-f)=$\pm$ 6
$\therefore$ $f_{1}=\frac{1}{2L}\sqrt{\frac{225}{\mu}}$ and $f_{2}=\frac{1}{2L}\sqrt{\frac{256}{\mu}}$
$\therefore$ $\frac{f_{1}}{f_{2}}=\frac{15}{16}$
$\therefore$ $f_{2}=\frac{16}{15}\times f_{1}$
$\Rightarrow$ $f_{2}=\frac{16}{15} (6+x)$
Taking two cases of f1 and equating both , we have
$(x+6)=\frac{16}{15} (x-6)$
$\therefore$ 15x+90=16x-96
$\therefore$ x=186 Hz