Answer:
Option B
Explanation:
According to question, capacitance of parallel plate capacitor is given by $C=\frac{\epsilon_{0 A}}{d}$
For first capacitor , $C_{1}=\frac{\epsilon_{0 A}}{3d}$
For second capacitor = $C_{2}=\frac{\epsilon_{0 A}}{6d}$
For third capacitor , $C_{3}=\frac{\epsilon_{0 A}}{9d}$
Again they are arranged in parallel
combination , so equivalent capacitor is given by
$ C_{eq}= C_{1}+C_{2}+C_{3}$
$=\frac{\epsilon_{0 A}}{d}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{9}\right)=\frac{\epsilon_{0 A}}{d}\times\frac{11}{18}=\frac{11\epsilon_{0 A}}{18d}$