Answer:
Option A
Explanation:
Given, $\int\frac{f(x)}{\log(\sin x)}dx=\log[\log \sin x]+c$
On differentiating both sides , we get
$\frac{f(x)}{\log (\sin x)}=\frac{1}{\log \sin x}\frac{d}{dx}(\log \sin x)+0$
$\Rightarrow$ $\frac{f(x)}{\log (\sin x)}=\frac{1}{\log \sin x}\times\frac{1}{\sin x}\times \cos x$
$\Rightarrow$ f(x) = cot x