Answer:
Option B
Explanation:
Given equation of curve is y=2x-x2
$\Rightarrow$ $x^{2}-2x=-y$
$\Rightarrow$ $ x^{2}-2x+1$ = -y+1
$\Rightarrow$ $(x-1)^{2}$ =-(y-1)
This is the equation of parabola having vertex (1,1) and open downward.
The parabola intersect the X-axis , put y=0 , we get
$ 0=2x-x^{2}$
$\Rightarrow$ x(2-x)=0
$\Rightarrow$ x=0,2
$\therefore$ Area of bounded region between the curve and X- axis
$=\int_{0}^{2} y dx$
$=\int_{0}^{2} (2x-x^{2}) dx=\left[\frac{2x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{2}$
$=\left[4-\frac{8}{3}-0-0\right]=\frac{4}{3}$ sq. units