1)

The degree and order of the differential equation 

$\left[1+\left(\frac{dy}{dx}\right)^{3}\right]^{7/3}=7\left(\frac{d^{2}y}{dx^{2}}\right)$ respectively are


A) 3 and 7

B) 3 and 2

C) 7 and 3

D) 2 and 3

Answer:

Option B

Explanation:

Given , differential equation  is 

$\left[1+\left(\frac{dy}{dx}\right)\right]^{7/3}=7\left(\frac{d^{2}y}{dx^{2}}\right)$

 On cubing both sides, we get

$\left[1+\left(\frac{dy}{dx}\right)^{3}\right]^{7}=7^{3}\left(\frac{d^{2}y}{dx^{2}}\right)^{3}$

Here, we see that highest  order derivative is 2, whose degree is 3.

 Hence , degree =3 and order=2