Loading [MathJax]/jax/element/mml/optable/BasicLatin.js


1)

For what value of k, the function defined by 

f(x)={log(1+2x)sinx0x2forx0kforx=0

 is continuous at x=0?


A) 2

B) 12

C) π90

D) 90π

Answer:

Option C

Explanation:

Given , p(x)={log(1+2x)sinx0x2forx0kforx=0

 =  f(x)={log(1+2x)sinπx180x2forx0kforx=0

 Since f(x) is continuous at x=0

    LHL=f(0)

Now, LHL=  lim

  =\lim_{h \rightarrow 0}\frac{\log(1+2(0-h)\sin\frac{\pi}{180^{0}}(0-h))}{(0-h)^{2}}

 =\lim_{h \rightarrow 0}\frac{\log(1-2h)\left\{-\sin\frac{\pi h}{180}\right\}}{h^{2}}

 =  \lim_{h \rightarrow 0}(-2)\frac{\log(1-2h)}{-2h}\times(-)\lim_{h \rightarrow 0}\frac{\sin \frac{\pi h}{180}}{\frac{\pi h}{180}}\times\frac{\pi}{180}

= (-2)\times(-1)\times 1\times \frac{\pi}{180}

\left[\because \lim_{x \rightarrow 0}\log\frac{1+x}{x}=1 and    \lim_{x \rightarrow 0}\frac{\sin x}{x}=1\right]

=\frac{\pi}{90}