Answer:
Option C
Explanation:
Given , p(x)={log(1+2x)sinx0x2forx≠0kforx=0
= f(x)={log(1+2x)sinπx180x2forx≠0kforx=0
Since f(x) is continuous at x=0
∴ LHL=f(0)
Now, LHL= lim
=\lim_{h \rightarrow 0}\frac{\log(1+2(0-h)\sin\frac{\pi}{180^{0}}(0-h))}{(0-h)^{2}}
=\lim_{h \rightarrow 0}\frac{\log(1-2h)\left\{-\sin\frac{\pi h}{180}\right\}}{h^{2}}
= \lim_{h \rightarrow 0}(-2)\frac{\log(1-2h)}{-2h}\times(-)\lim_{h \rightarrow 0}\frac{\sin \frac{\pi h}{180}}{\frac{\pi h}{180}}\times\frac{\pi}{180}
= (-2)\times(-1)\times 1\times \frac{\pi}{180}
\left[\because \lim_{x \rightarrow 0}\log\frac{1+x}{x}=1 and \lim_{x \rightarrow 0}\frac{\sin x}{x}=1\right]
=\frac{\pi}{90}