Answer:
Option B
Explanation:
Let u=log (sec $\theta$+ tan $\theta$) and v= $ \sec \theta$
On differentiating both sides w.r.t $\theta$ , we get
$\frac{du}{d\theta}=\frac{1}{(\sec \theta+\tan \theta)}(\sec \theta\tan \theta+\sec^{2} \theta)$ and
$\frac{dv}{d\theta}=\sec \theta\tan \theta$
$\therefore$ $\frac{dv}{d\theta}=\frac{\frac{du}{d\theta}}{\frac{dv}{d\theta}}$
= $\frac{\sec \theta(\tan \theta+\sec \theta)}{( \sec\theta+\tan \theta)\times \sec \theta \tan \theta}= \cot \theta$
$\Rightarrow$ $\frac{du}{dv(\theta=\pi/4)}=\cot \frac{\pi}{4}=1$