Answer:
Option B
Explanation:
(a−b)2cos2C2+(a+b)2sin2C2
= (a2+b2−2ab)cos2C2+(a2+b2+2ab)sin2C2
= a2(cos2C2+sin2C2)+b2(cos2C2+sin2C2)−2ab(cos2C2−sin2C2)
= a2+b2−2abcosC
[∵
= a^{2}+b^{2}-2ab \left(\frac{a^{2}+b^{2}-c^{2}}{2ab}\right)=c^{2}
\left[\because \cos C =\frac{a^{2}+b^{2}}{2ab}\right]