Answer:
Option A
Explanation:
Given, f(x)=x3+5x2−7x+9
On differentiating both sides w.r.t x , we get
f'(x) = 3x2+10x−7
Let x=1 and △x=0.1 , so that
f(x+△x)=f(1+0.1)=f(1.1)
We know that ,
f(x+△x)=f(x)+△xf′(x)
= x3+5x2−7x+9+△x×(3x2+10x−7)
Put x=1 and △x=0.1 , we get
f(1+0.1)
= 13+5(1)2−7(1)+9+0.1×(3×12+10×1−7)
⇒ f(1.1)=1+5−7+9+0.1(3+10−7)=8+0.1(6)=8+0.6=8.6