1)

If Rolle's theorm for f(x)=ex(sin x-cos x) is verified on $\left[\frac{\pi}{4},\frac{5\pi}{4}\right]$, then the value of c is 


A) $\frac{\pi}{3}$

B) $\frac{\pi}{2}$

C) $\frac{3\pi}{4}$

D) $\pi$

Answer:

Option B

Explanation:

 Given ,   f(x)=ex(sin x-cos x) 

 On differentiating  both sides w.r.t x, we get

$ f'(x)= e^{x}\frac{d}{dx}(\sin x-\cos x)+(\sin x-\cos x )\frac{d}{dx}(e^{x})$

                       [ by using product rule of derivative]

$= e^{x}(\cos x+\sin x)+(\sin x-\cos x )e^{x}= 2e^{x} \sin x$

 We know that, if Rolle's theorm is verified,

then their exist   $c\in \left(\frac{\pi}{4},\frac{5 \pi}{4}\right)$ , such that f'(c)=0

 $\therefore$   $2e^{c} \sin c =0$ $\Rightarrow$ $\sin c=0$

$\Rightarrow$         $c=\frac{\pi}{2}$  $\in \left(\frac{\pi}{4},\frac{5 \pi}{4}\right)$