1) If $A=\begin{bmatrix}1 & 1&0 \\2 & 1&5\\1&2&1 \end{bmatrix}$ , then $a_{11}A_{21}+a_{12}A_{22}+a_{13}A_{23}$ is equal to A) 1 B) 0 C) -1 D) 2 Answer: Option BExplanation:Given , $A=\begin{bmatrix}1 & 1&0 \\2 & 1&5\\1&2&1 \end{bmatrix}$ We know that, the sum of the product of element other than the corresponding cofactor is zero. $\therefore$ $a_{11}A_{21}+a_{12}A_{22}+a_{13}A_{23}$ =0