Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

The differential equation of the family of circles touching Y-axis at the origin is


A) (x2+y2)dydx2xy=0

B) (x2y2)+2xydydx=0

C) (x2y2)dydx2xy=0

D) (x2+y2)+2xydydx=0

Answer:

Option B

Explanation:

Let centre of circle on X-axis be (h,0) .The radius of circle will be h

472021739_m1.PNG

   The equation of circle having centre (h,0) and radius h is

 (xh)2+(y0)2=h2

     x2+h22hx+y2=h2

       x22hx+y2=0  ............(i)

 On differentiating both sides w.r.t x, we get

    2x2h+2ydydx=0      h=x+ydydx

On putting h=x+y dydx  in Eq.(i)  , we get

 x22(x+ydydx)x+y2=0

      x2+y22xydydx=0

      (x2y2)+2xydydx=0