Answer:
Option B
Explanation:
Let centre of circle on X-axis be (h,0) .The radius of circle will be h

∴ The equation of circle having centre (h,0) and radius h is
(x-h)^{2}+(y-0)^{2}=h^{2}
\Rightarrow x^{2}+h^{2}-2hx+y^{2}=h^{2}
\Rightarrow x^{2}-2hx+y^{2}=0 ............(i)
On differentiating both sides w.r.t x, we get
2x-2h+2y \frac{dy}{dx}=0 \Rightarrow h= x+y\frac{dy}{dx}
On putting h=x+y \frac{dy}{dx} in Eq.(i) , we get
x^{2}-2\left( x+y \frac{dy}{dx}\right)x+y^{2}=0
\Rightarrow -x^{2}+y^{2}-2xy\frac{dy}{dx}=0
\Rightarrow (x^{2}-y^{2})+2xy\frac{dy}{dx}=0