Answer:
Option B
Explanation:
Let centre of circle on X-axis be (h,0) .The radius of circle will be h

∴ The equation of circle having centre (h,0) and radius h is
(x−h)2+(y−0)2=h2
⇒ x2+h2−2hx+y2=h2
⇒ x2−2hx+y2=0 ............(i)
On differentiating both sides w.r.t x, we get
2x−2h+2ydydx=0 ⇒ h=x+ydydx
On putting h=x+y dydx in Eq.(i) , we get
x2−2(x+ydydx)x+y2=0
⇒ −x2+y2−2xydydx=0
⇒ (x2−y2)+2xydydx=0