Processing math: 21%


1)

The differential equation of the family of circles touching Y-axis at the origin is


A) (x2+y2)dydx2xy=0

B) (x2y2)+2xydydx=0

C) (x2y2)dydx2xy=0

D) (x2+y2)+2xydydx=0

Answer:

Option B

Explanation:

Let centre of circle on X-axis be (h,0) .The radius of circle will be h

472021739_m1.PNG

   The equation of circle having centre (h,0) and radius h is

 (x-h)^{2}+(y-0)^{2}=h^{2}

 \Rightarrow    x^{2}+h^{2}-2hx+y^{2}=h^{2}

\Rightarrow       x^{2}-2hx+y^{2}=0  ............(i)

 On differentiating both sides w.r.t x, we get

    2x-2h+2y \frac{dy}{dx}=0   \Rightarrow    h= x+y\frac{dy}{dx}

On putting h=x+y \frac{dy}{dx}  in Eq.(i)  , we get

 x^{2}-2\left( x+y \frac{dy}{dx}\right)x+y^{2}=0

\Rightarrow      -x^{2}+y^{2}-2xy\frac{dy}{dx}=0

 \Rightarrow     (x^{2}-y^{2})+2xy\frac{dy}{dx}=0