Answer:
Option B
Explanation:
n=1, $r=\frac{5}{3}$
T-V equation in adiabatic process is
TVr-1 = constant
T1 V1r-1 =T2 V2r-1
$\Rightarrow$ T2 = T1 $(\frac{V_{1}}{V_{2}})^{r-1}$ = $100\times (\frac{1}{8})^{\frac{2}{3}}$
$\Rightarrow$ T2 =25 K
$C_{v}=\frac{3}{2}R $ for monoactomic gas
$\therefore$ $\triangle U = n C_{v}\triangle T= n\times (\frac{3R}{2}) (T_{2}-T_{1})$
= $1 \times \frac{3}{2}\times 8 \times (25-100)$
= -900 J
Therefore, Decreases in internal energy = 900 J