Answer:
Option A
Explanation:
If average speed is considered along X-axis
$R_{1}=\frac{mv_{0}}{qB_{1}}$ , $R_{2}=\frac{mv_{0}}{qB_{2}}=\frac{mv_{0}}{4qB_{1}}$
$R_{1}>R_{2}$
Distance travelled along X-axis
$\triangle x=2(R_{1}+R_{2})=\frac{5mv_{0}}{2qB_{1}}$
Total time = $\frac{T_{1}}{2}+\frac{T_{2}}{2}= \frac{\pi m}{qB_{1}}+\frac{\pi m}{qB_{2}}$
$= \frac{\pi m}{qB_{1}}+\frac{\pi m}{4qB_{1}}=\frac{5\pi m}{4qB_{1}}$
Magnitude of average speed $= \frac{\frac{5mv_{0}}{2qB_{1}}}{\frac{5\pi m}{4qB_{1}}}$
= 2m/s