Answer:
Option C
Explanation:
$a=\frac{g\sin\theta}{1+\frac{1}{MR^{2}}}$
$a_{ring}=\frac{g\sin\theta}{2}$ ($I= MR^{2}$)
$a_{disc}=\frac{2g\sin\theta}{3}$ ($I= \frac{MR^{2}}{2}$)
$s= \frac{h}{\sin\theta}=\frac{1}{2}at^{2}$
$= \frac{1}{2}(\frac{g\sin\theta}{2})t_{1}^{2}$
$\Rightarrow$ $t_{1}=\sqrt{\frac{4h}{g\sin^{2}\theta}}=\sqrt{\frac{16h}{3g}}$
$s= \frac{h}{\sin \theta}=\frac{1}{2}at^{2}=\frac{1}{2}(\frac{2g\sin\theta}{3})t_{2}^{2}$
$\Rightarrow$ $t_{2}=\sqrt{\frac{3h}{g\sin^{2}\theta}}=\sqrt{\frac{4h}{g}}$
$t_{2}-t_{1}=\sqrt{\frac{16h}{3g}}-\sqrt{\frac{4h}{g}}$
$= \frac{2-\sqrt{3}}{\sqrt{10}}$
$\sqrt{h}[\frac{4}{\sqrt{3}}-2] =2-\sqrt{3}$
Solving this equation we get, h=0.75m