Answer:
Option B
Explanation:
$A= a\hat{i}$ and $B= a\cos\omega \hat{i}+a \sin \omega t\hat{j}$
$A+B= (a+a\cos\omega t )\hat{i}+a \sin \omega t\hat{j}$
$A-B= (a-a\cos\omega t )\hat{i}+a \sin \omega t\hat{j}$
$\mid A+B\mid= \sqrt{3}\mid A-B\mid$
$\sqrt{(a+a\cos\omega t)^{2}+(a\sin\omega t)^{2}}=\sqrt{3}\sqrt{(a-a\cos \omega t)^{2}+(a \sin \omega t)^{2}}$
$\Rightarrow$ $2 \cos\frac{\omega t}{2}=\pm \sqrt{3}\times 2\sin \frac{\omega t}{2}$
$\tan \frac{\omega t}{2}=\pm \frac{1}{\sqrt{3}}$
$ \frac{\omega t}{2}=n\pi\pm \frac{\pi}{6}$
$ \frac{\pi}{12}t=n\pi\pm \frac{\pi}{6}$
$t=(12n\pm 2)s$
= 2 s