Answer:
Option (B,D)
Explanation:
$I_{1}=\frac{V}{R}(1-e^-{\frac{tR}{L}}$
$I_{2}=\frac{V}{R}(1-e^-{\frac{tR}{2L})}$
From principle of superposition,
$I=I_{1}-I_{2}\Rightarrow I=\frac{V}{R}e^{-\frac{tR}{2L}}(1-e^{-\frac{tR}{2L}})$ .......(i)
I is maximum when $\frac{\text{d}I}{\text{d}t}=0$ , which gives
$e^{-\frac{IR}{2L}}=\frac{1}{2}$ or $t =\frac{2L}{R}In 2$
Substituting this time in Eq. (i), we get
$I_{max}=\frac{V}{4R}$